78. Carcinogenic Nitrogen Compounds. Part XIV.* Friedel-Crafts Reactions with m- and p-Fluorotoluene.

By NG. PH. BUU-HOÏ and NG. D. XUONG.

The behaviour of m- and p-fluorotoluene in Friedel-Crafts acylations has been studied. With the former, the reaction is rigidly proved to involve the position *para* to the fluorine atom, and with the latter, the ketone groups are assumed by analogy to occupy the position *ortho* to fluorine. Numerous other aromatic and heterocyclic fluorine-containing compounds have been prepared.

m-CHLORO- and m-BROMO-TOLUENE undergo acetylation (Claus, J. pr. Chem., 1891, 43, 361) and chloroacetylation (Kunckell, Ber., 1908, 41, 2648) at the position para to the halogen atom. We have now found m-fluorotoluene to be readily acetylated in a Friedel-Crafts reaction; the constitution of the product as 4-fluoro-2-methylacetophenone was proved by conversion into its oxime, Beckmann rearrangement, and hydrolysis to 4-fluoro-2-methylaniline, prepared from 4-fluoro-2-methyl-1-nitrobenzene (Schiemann, Ber., 1929, 62, 1797). The constitution of 4-fluoro-2-methyl-propiophenone, -n-butyrophenone, and -phenylacetophenone was proved similarly. Sodium hypobromite oxidation of 4-fluoro-2-methylacetophenone gave the hitherto unknown 4-fluoro-2-methylbenzoic acid.

Since the fluorine atom predominates over the methyl group in orienting acylation of *m*-fluorotoluene, just as in acetylation of *o*-fluorotoluene (Buu-Hoï and Jacquignon, *J.*, 1952, 4173), and since acetylation of *p*-chloro- and *p*-bromo-toluene occurred mainly at the position *ortho* to the halogen atom (Claus, *J. pr. Chem.*, 1892, **46**, 21, 26; Mayer and Freund, *Ber.*, 1922, **55**, 2052), the acetylation, propionylation, and phenylacetylation of *p*-fluorotoluene probably also occur at this position. Beckmann rearrangement of 2-fluoro-5-methylpropiophenone oxime yielded a base which is probably 2-fluoro-5-methylaniline.

As we are interested in substituted 2-phenylcinchoninic acids, and particularly in the

effect of fluorine therein, we prepared a series of fluorine-containing 2-arylcinchoninic acids (I; $R' = CO_2H$), 2-arylquinolines (I; R' = H) and 2-arylpyrrocolines (II) from the

ketones mentioned above. The cinchoninic acids, prepared by Pfitzinger's reaction, are listed in Table 1, and the quinolines obtained by thermal decarboxylation in Table 2. 2-(4-Fluoro-3-methylphenyl)pyrrocoline and its 5- and 7-methyl homologues were prepared from ω -bromo-4-fluoro-2-methylacetophenone and α -picoline or 2:4- and 2:6-lutidine by Tschitschibabin's reaction (*Ber.*, 1927, **60**, 1607; Borrows, Holland, and Kenyon, *J.*, 1946, 1069, 1075, 1083; Buu-Hoï and Hoán, *Rec. Trav. chim.*, 1949, **68**, 441).

TABLE 1. Fluorinated cinchoninic acids (I; $R' = CO_{9}H$).

			· · ·	4 /		
<i>с.</i>	. Found, Requ %: %:	- /				Reqd.,
Subst.	%: %:	: Subst.			%:	%:
R R''	M. p. Formula C H C	H R R''	М.р.	Formula	С́ЙН	С́И
нн	$220^{\circ} C_{17}H_{12}O_{2}NF = 72.4 \ 4.1 \ 72.6 \ 4.1$	4·3 H H	235°	C ₁₇ H ₁₂ O ₂ NF	72.4 4.2	72·6 4·3
H Br	240 C ₁₇ H ₁₁ O ₂ NBrF 56·4 3·2 56·7 3	3·1 H Me	234	$C_{18}H_{14}O_{2}NF$	73 ·0 4·7	$73 \cdot 2 \ 4 \cdot 7$
H Me	$230 C_{18}H_{14}O_{2}NF 73.0 4.8 73.2 73.2 73.$	4·7 H Cl	238	$C_{17}H_{11}O_2NCIF$	$64 \cdot 4 \ 3 \cdot 6$	64·7 3·5
Me Me	329 C ₁₉ H ₁₆ O ₂ NF 73.5 5.4 73.8 5	5·2 H Br	246	C ₁ ,H ₁ ,O,NBrF	56·5 3·2	56·7 3·1
Me H	306 $C_{18}H_{14}O_{2}NF$ 73 ·1 5·0 73 ·2 4	4·7 MeH	291	C ₁₈ H ₁₄ O ₂ NF	73 .0 4 .8	73 ·2 4·7
Me Br	$309 - C_{18}H_{13}O_2NBrF 57.6 4.0 57.8 3$	3.5 Me Cl	3 00	C ₁₈ H ₁₃ O ₂ NClF	$65.5 \ 3.9$	65·6 4·1
	310	Me Br	279	C ₁₈ H ₁₃ O ₂ NBrF	57.4 3.6	57·8 3·7
Et H	304 C ₁₉ H ₁₆ O ₂ NF 73.5 5.1 73.8 5	5·2 Ph H	> 320	C ₂₃ H ₁₆ O ₂ NF		77·3 4·5
Ph H	$314 C_{23}H_{16}O_{2}NF 77.1 4.3 77.3 77.3 77$	4·5 Ph Cl	312	$C_{23}H_{15}O_2NCIF$	70.6 3.9	70·8 3·8
Ph Br	318 $C_{23}H_{15}O_{2}NBrF$ 63.0 3.2 63.3 3	3·4. Ph Br	> 320	C ₂₃ H ₁₅ O ₂ NBrF	63 .0 3 .2	63·3 3·4
Ph Me	>330 C ₂₄ H ₁₈ O ₂ NF 77·3 4·8 77·6 4	4 ∙9		•		

TABLE 2. (a) Fluorinated 2-arylquinolines (I; R' = H).

~				Fou		Req			_			Fou		Req	
Su	bst.			%	:	_%	:	Su	bst.			- %	:	%	:
\mathbf{R}	R''	М.р.	Formula	C	н	C	н	\mathbf{R}	R″	М.р.	Formula				Н
Ar = 4-Fluoro-2-methylphenyl.							Ar = 2-Fluoro-5-methylphenyl.								
Н	\mathbf{Br}	118°	C ₁₆ H ₁₁ NBrF	60.6	3.6	60.8	3.5	н	\mathbf{Br}	72°	C ₁₆ H ₁₁ NBrF	60.5	$3 \cdot 5$	60.8	$3 \cdot 5$
Me	\mathbf{Br}	130	C ₁₇ H ₁₃ NBrF	61.6	$4 \cdot 2$	61·8	3 ·9	Me	н	80	C ₁₇ H ₁₄ NF	81.1	5.4	81·3	5.6
\mathbf{Ph}	\mathbf{Br}	136	C ₂₂ H ₁₅ NBrF	67·1	4 ·0	67·3	3.8	Me	Cl	128	C ₁₇ H ₁₃ NClF	71.2	4.4	71.4	4.5
	_			_				Me	\mathbf{Br}	132	C ₁₇ H ₁₃ NBrF	61.5	3.6	61.8	3 ∙9
A.	r = 2	-Fluore	o-5-methylphe	enyl.				\mathbf{Ph}	н	130	C ₂₂ H ₁₆ NF	84.0	$5 \cdot 2$	84·3	$5 \cdot 1$
н	Cl	73	C ₁₆ H ₁₁ NClF	70.4	$4 \cdot 2$	70.7	$4 \cdot 0$	Ph	\mathbf{Br}	154	C ₂₂ H ₁₅ NBrF	67 ·0	$3 \cdot 5$	67.3	3 ∙8

(b) Picrates of fluorinated 2-arylquinolines (I; $\mathbf{R'} = \mathbf{H}$).

			· · ·			-			N		
				Found,	Reqd.,					Found,	Reqd.,
Sı	ıbst.			%:	%:	S	ıbst.			%:	%:
R	$\mathbf{R}^{\prime\prime}$	М.р.	Formula	N	N	R	R″	М. р.	Formula	N	Ň
A	$\mathbf{r} = 4$	l-Fluor	o-2-methylphenyl			A	r = i	2-Fluor	o-5-methylphenyl		
Н	н	190°	$C_{22}H_{15}O_{7}N_{4}F$	12.0	11.7	н	Cl	195°	C, H, O, N, CIF	11.2	11.0
\mathbf{Ph}	\mathbf{Br}	182	$C_{28}H_{18}O_7N_4BrF$	9.0	$9 \cdot 2$	H	Br	207	C.H.O.N.BrF	10.3	10.0
						Me	н	192	C, H, O, N, F	11.7	11.3
A	r = 2	-Fiuor	0-5-methylphenyl	•		Me	Cl	194	C ₂₃ H ₁₆ O ₇ N ₄ ClF	10.9	10.6
н	Me	210	$C_{23}H_{17}O_{7}N_{4}F$	11.7	11.4	Me	\mathbf{Br}	185	C ₂₃ H ₁₆ O ₇ N ₄ BrF	10.0	10.2
Me	Me	171	$C_{24}H_{19}O_7N_4F$	11.3	11.5	Ph	н	216	C28H19O7N4F	10· 3	10.0
н	Н	198	$C_{22}H_{15}O_7N_4F$	12.0	12.3				• •		

EXPERIMENTAL

4-Fluoro-2-methylacetophenone.—A mixture of m-fluorotoluene (30 g.) and acetyl chloride (24 g.), in dry carbon disulphide (100 c.c.), and powdered aluminium chloride (48 g.), was kept at room temperature for 24 hours and subsequently refluxed for 2 hours. After the usual treatment, the ketone was obtained as a mobile liquid (40 g.), b. p. 206°, n_D^{o} 1.5120 (Found : C, 71.0; H, 5.8. C₉H₉OF requires C, 71.1; H, 5.9%); oxime, prisms (from ether), m. p. 88° (Found : N, 8.1. C₉H₁₀ONF requires N, 8.4%); p-dimethylaminobenzylidene derivative, long, orange-yellow needles (from methanol), m. p. 109° (Found : N, 4.9. C₁₈H₁₈ONF requires N, 4.9%).

(II)

4-Fluoro-2-methylbenzoic Acid.—4-Fluoro-2-methylacetophenone (19 g.) was shaken with aqueous sodium hypobromite (from bromine, 21·4 c.c.; sodium hydroxide, 42 g.); the resulting bromoform was decanted, and the excess of hypobromite destroyed by sodium hydrogen sulphite. Acidification with hydrochloric acid precipitated the *acid*, which formed silky sublimable needles (from benzene), m. p. 168° (Found : C, 62·0; H, 4·6. C₈H₇O₂F requires C, 62·3; H, 4·5%).

4-Fluoro-2-methylaniline.—To an ice-cooled solution of 4-fluoro-2-methylacetophenone oxime (9 g.) in anhydrous ether (100 c.c.), finely powdered phosphorus pentachloride (12 g.) was added with shaking (15 min.). The mixture was poured on ice, the ethereal layer washed with water, the solvent removed, and the residue refluxed for 1 hour with concentrated hydrochloric acid. The amine obtained on basification was taken up in benzene and purified by vacuum-distillation; it formed a pale yellow oil (4 g.), b. p. $90-92^{\circ}/16 \text{ mm.}, n_D^{23} 1.5335$, which gave a picrate, m. p. 199° , and an N-benzoyl derivative, m. p. $165-166^{\circ}$ (Schiemann, *loc. cit.*, gave m. p. 199° and 166° , respectively).

4-Fluoro-2-methylpropiophenone.—This ketone, obtained in 80% yield as for the lower homologue, had b. p. 220° (119°/13 mm.), n_{20}^{20} 1·5081 (Found : C, 71·1; H, 6·6. $C_{10}H_{11}OF$ requires C, 72·3; H, 6·6%). 4-Fluoro-2-methyl-n-butyrophenone (85% yield) formed a pale yellow liquid, b. p. 233° (135°/13 mm.), n_{20}^{20} 1·5005 (Found : C, 73·3; H, 7·5. $C_{11}H_{13}OF$ requires C, 73·3; H, 7·2%); its oxime was a pale yellow oil, b. p. 155°/18 mm., n_{20}^{25} 1·5172 (Found : N, 7·0. $C_{11}H_{14}ONF$ requires N, 7·2%), which underwent a Beckmann rearrangement to give the same amine as above. 4-Fluoro-2-methyl- α -phenylacetophenone had b. p. 308° (196°/14 mm.), n_{20}^{20} 1·5630 (Found : C, 78·8; H, 5·8. $C_{15}H_{13}OF$ requires C, 78·9; H, 5·7%), giving a thiosemicarbazone, m. p. 138° (Found : N, 13·7. $C_{16}H_{16}N_3SF$ requires N, 14·0%).

2-(4-Fluoro-2-methylphenyl)pyrrocoline (II; R = R' = H).— ω -Bromo-4-fluoro-2-methylacetophenone, prepared from 4-fluoro-2-methylacetophenone (10.5 g.) and bromine (11 g.), had b. p. 140°/15 mm., n_D^{18} 1.5603. A solution of this compound (1.5 g.) and α -picoline (0.6 g.) in ethanol (10 c.c.) was refluxed for 30 min.; on addition of ether, a precipitate of the acylpyridinium salt was obtained, and this was collected and treated with a boiling aqueous solution of sodium hydrogen carbonate for 10 min.; the *pyrrocoline* obtained formed from ethanol fine, shiny prisms (1 g.), m. p. 86° (Found : C. 79.8; H, 5.5. C₁₅H₁₂NF requires C, 80.0; H, 5.3%). 2-(4-Fluoro-2-methylphenyl)-7-methylpyrrocoline (II; R = Me, R' = H), similarly prepared from 2 : 4-lutidine (0.8 g.), formed from ethanol shiny leaflets, m. p. 74° (Found : C, 80.1; H, 6-1. C₁₆H₁₄NF requires C, 80.3; H, 5.9%). The analogous 5-methylpyrrocoline (II; R = H, R' = Me), prepared from 2 : 6-lutidine, was an oil (Found : N, 6-1. C₁₆H₁₄NF requires N, 5.9%), and gave a *picrate* as brownish prisms (from ethanol), m. p. 155—156° (Found : N, 12.2. C₂₂H₁₇O₇N₄F requires N, 12.0%).

2-Fluoro-5-methylacetophenone.—Obtained from p-fluorotoluene (35 g.) as a liquid (20 g.), b. p. 208—209°, n_D^{21} 1.5090 (Found : C, 71.1; H, 6.0. C₉H₉OF requires C, 71.1; H, 5.9%), this ketone formed a p-dimethylaminobenzylidene derivative, shiny yellow leaflets, m. p. 99° (Found : N, 4.6. C₁₈H₁₈ONF requires N, 4.9%), from methanol.

2-Fluoro-5-methylpropiophenone.—The ketone, obtained in 78% yield, had b. p. 22°, n_{21}^{21} 1·4999 (Found : C, 72·2; H, 7·4. C₁₀H₁₁OF requires C, 72·3; H, 7·2%); its oxime, a viscous oil, b. p. 150°/18 mm., $n_{25}^{25.5}$ 1·5268 (Found : N, 7·5. C₁₀H₁₂ONF requires N, 7·7%), gave on Beckmann rearrangement 2-fluoro-5-methylaniline, a pale yellow oil, b. p. 88—90°/17 mm., n_{23}^{23} 1·5312 (Found : C, 67·1; H, 6·2. C₇H₈NF requires C, 67·2; H, 6·4%); its N-acetyl derivative crystallised from ligroin-benzene as silky leaflets, m. p. 70° (Found : C, 64·6; H, 6·2. C₉H₁₀ONF requires C, 64·7; H, 6·07.). 2-Fluoro-5-methyl- α -phenylacetophenone, obtained in 75% yield, was a pale yellow oil, b. p. 316° (204—206°/17 mm.), n_{21}^{21} 1·5600 (Found : C, 78·6; H, 5·7. C₁₅H₁₃OF requires C, 78·9; H, 5·7%).

Pfitzinger Reactions.—These were performed as described by Buu-Hoï (J, 1946, 795). The cinchoninic *acids* (Table I) obtained were recrystallised from ethanol or acetic acid; the corresponding *quinolines* (Table 2a) were prepared by heating the well-dried acids above their m. p. in a vacuum, distilling the residue, and crystallising the distillate from ethanol.

THE RADIUM INSTITUTE, UNIVERSITY OF PARIS.

[Received, August 8th, 1952.]